Exercise IIX
- Use the definition of Big Theta to show the asymptotic running time of a given program.
Consider the following function $T(n)$ describes the precise running time of an algorithm:
$$ T(n) = 3n^2 - 100n + 6 $$
Exercise Show $T(n) \in \Theta(n^2)$.
Solution
We have shown in earlier lessons that $T(n) \in \Omicron(n^2)$ and $T(n) \in \Omega(n^2)$. Therefore, we can conclude $T(n) \in \Theta(n^2)$.
Exercise Show $T(n) \notin \Theta(n)$.
Solution
We have shown earlier that $T(n) \in \Omega(n)$ but $T(n) \notin \Omicron(n)$. Therefore, we can conclude $T(n) \notin \Theta(n)$.
Exercise Show $T(n) \notin \Theta(n^3)$.
Solution
We have shown earlier lessons that $T(n) \in \Omicron(n^3)$ but $T(n) \notin \Omega(n^3)$. Therefore, we can conclude $T(n) \notin \Theta(n^3)$.